Computer Science & Engineering

Data Communication and Computer
Networks

(MTCSE-101-A)

231 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The transport layer is responsible for process-to-
process delivery—the delivery of a packet, part of a
message, from one process to another. Two processes
communicate in a client/server relationship, as we will
see later.

23.3

» The transport layer is responsible for the delivery of a
message from one process to another

» the transport layer header must include a service —
point —address in the OSI model and port number in
the TCP/IP (internet model)

»The Internet model has three protocols at the
transport layer: UDP, TCP, and SCTP.

»UDP: Is the simplest of the three.
»TCP: A complex transport layer protocol.

»SCTP: The new transport layer protocol that is
designed for specific applications such as multimedia.

— Process-to-pr

» The Data link layer is responsible for delivery of frames
between nodes over a link =» node to node delivery

» The network layer is responsible for delivery of datagrams
between two hosts = host to host delivery

» Real communication takes place between two processes
(application programs). We need process-to-process delivery.

» We need a mechanism to deliver data from one of processes
running on the source host to the corresponding process running
on the destination host.

» The transport layer is responsible for process-to-process
delivery.

23.4

23.5

» At the data link layer, we need a MAC address to choose
one node among several

»~ At the network layer, we need an IP address to choose one
host among millions.

» At the transport layer, we need a port number, to choose
among multiple processes running on the destination host.

» The destination port number is needed for delivery; the
source port number is needed for the reply.

»1In the Internet model, the port numbers are 16-bit integers
between 0 and 65,535.

il

‘ Note I

The transport layer is responsible for
process-to-process delivery.

23.6

Figure 23.1 Types of data deliveries

Processes Processes

Node to node: Data link layer
ces Host to host: Network layer coo
Process to process: Transport layer

node | node Node to node | node | node

- - -
rla. rlﬁ. rlj

I |
I |
I |
/ | Nodeto : Node to : : Node to : Node to | \
! , |
: , !
| Host to host |
| |

/ Process to process \

23.7

23.8

»The client program defines itself with a port number,
chosen randomly by the transport layer software running on
the client host.

» The server process must also define itself with a port
number This port number, however, cannot be chosen
randomly

» The Internet uses port numbers for servers called well-
known port numbers.

Every client process knows the well-known port number of
thecorresponding server process

» For example, while the Daytime client process, can use an
ephemeral (temporary) port number 52,000 to identify itself,
the Daytime server process must use the well-known
(permanent) port number 13.

Port numbers

Daytime Daytime
client server
H 52,000 — — 13 H
A A
Transport layer Transport layer

Data | 13 |52,000 mmd>
€= 13 |52000| Data

23.9

IP addresses versus port numbers

IP header

Transport layer
header

193.14.26.7

13

IP address
selects the host

The IANA (Internet Assigned Number Authority) has divided the port numbers

into three ranges:

d Well- known ports:
The ports ranging from 0 to 1023 are assigned and controlled by
TANA.

1 Registered ports :
ranging from 1024 to 49,151 are not assigned or controlled
by IANA. They can only be registered with IANA to prevent duplication.

4 Dynamic (or private):

ranging from 49,152 to 65,535 are neither controlled nor registered.
They can be used by any process. These are the ephemeral port

Registered

0 1023 ‘ 49,152 65,535

| | | | | |

| | 1 | I

t 1024 49,151
Well known Dynamic

IANA ranges

Registered
0 1023 ‘ 49,152 65,535
| | | | | |
| | | | | |
t 1024 49,151 t
Well known Dynamic

7 Process-to-process delivery needs two identifiers, IP address
and the port number, at each end to make a connection.

» The combination of an IP address and a port number is called
a socket address.

» A transport layer protocol needs a pair of socket addresses:
the client socket address and the server socket address.

» These four pieces of information are part of the IP header and

the transport layer protocol header.
» The IP header contains the IP addresses; the UDP or TCP

header contains the port numbers.

IP address| 200.23.56.8 69 Port number

Socket address| 200.23.56.8 69

Figure 23.5 Socket address

IP address| 200.23.56.8 69 Port number

Socket addre55| 200.23.56.8 69 I

23.14

Figure 23.6 Multiplexing and demultiplexing

23.15

Service

~ A transport layer protocol can either be connectionless
or connection-oriented.

» Connectionless Service

» In a connectionless service, the packets are sent from one
party to another with no need for connection
establishment or connection release.

» The packets are not numbered; they may be delayed or
lost or may arrive out of sequence.

» There 1s no acknowledgment .

~UDP is a connectionless transport layer protocols.

23.16

Service

Connection Oriented Service

~» In a connection-oriented service, a connection is first
established between the sender and the receiver.

» Data are transferred.

» At the end, the connection is released. TCP and SCTP
are connection-oriented protocols.

23.17

23.18

» The transport layer service can be reliable or unreliable.

= If the application layer program needs reliability, we
use a reliable transport layer protocol by
implementing flow and error control at the transport
layer. This means a slower and more complex service.

= On the other hand, if the application program does
not need reliability then an unreliable protocol can be
used.

» UDP 1s connectionless and unreliable;
~ TCP and SCTP are connection oriented and reliable.

~ These three protocols can respond to the demands of
the application layer programs.

Figure 23.7 Error control

Error is checked in these paths by the data link layer
Error is not checked in these paths by the data link layer

Transport Transport
Network Network

Data link I Data link
Physical I Physical

23.19

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

Application
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

23.20

SMTP FTP TFTP DNS SNMP
SCTP TCP
|IGMP ICMP
IP

ARP

Underlying LAN or WAN

technology

The User Datagram Protocol (UDP) is called a
connectionless, unreliable transport protocol. It does
not add anything to the services of IP except to provide

process-to-process communication instead of host-to-
host communication.

Topics discussed in this section:

Well-Known Ports for UDP
User Datagram

Checksum

UDP Operation

Use of UDP

23.21

Transport SCTP TcP
layer

~ UDP is a connectionless, unreliable transport protocol.

~ It does not add anything to the services of IP except to
provide process-to process communication instead of host-
to-host communication.

~ UDP is a very simple protocol using a minimum of
overhead.

= If a process wants to send a small message and does not care
much about reliability, it can use UDP.

= Sending a small message by using UDP takes much less

interaction between the sender and receiver than using TCP
or SCTP.

23.22

8 bytes |
H Header Data

Source port number Destination port number
16 bits 16 bits

Total length Checksum
16 bits 16 bits

~ UDP packets, called user datagrams, have a fixed size header of 8 bytes.

~ Source port number: This is the port number used by the process
running on the source host.

~ Destination port number: This is the port number used by the process
running on the destination host.

~ Length: This is a 16-bit field that defines the total length of the user
datagram.

» (Checlksum: This field is used to detect errors over the entire user

datagram (header plus data). The inclusion of the checksum in the UDP
datagram is optional

23.23

23.24

_n-"'-.-.-i‘-

Connectionless Services
UDP provides a connectionless service

» no relationship between the different user datagram
even 1f they are coming from the same source process
and going to the same destination program.

» Also, there 1s no connection establishment and no
connection termination.

» Each user datagram can travel on a different path.
» The user datagrams are not numbered.

» Each UDP user datagram request must be small enough to
fit into one user datagram. Only those processes sending
short messages should use UDP.

23.25

Flow and Error Control

~» UDP i1s a very simple, unreliable transport protocol.

~There is no flow control: The receiver may overflow
with incoming messages.

~There 1s no error control mechanism in UDP except for
the checksum.

~The sender does not know if a message has been lost or
duplicated.

~ When the receiver detects an error through the
checksum, the user datagram is discarded.

23.26

 —— TjS G

JUDP is suitable for a process that requires simple

request-response communication with little concern
for flow and error control.

J UDP is suitable for a process with internal flow and
error control mechanisms. For example, the Trivial
File Transfer Protocol (TFTP) process includes flow
and error control..

- UDP is a suitable transport protocol for multicasting.
Multicasting capability is embedded in the UDP
software but not in the TCP software.

23.27

Table 23.1 well-known ports used with UDP

Port Protocol Description
7 Echo Echoes a received datagram back to the sender
9 Discard Discards any datagram that is received
11 Users Active users
13 Daytime Returns the date and the time
17 Quote Returns a quote of the day
19 Chargen Returns a string of characters
53 Nameserver Domain Name Service
67 BOOTPs Server port to download bootstrap information
68 BOOTPc Client port to download bootstrap information
69 TFTP Trivial File Transfer Protocol
111 RPC Remote Procedure Call
123 NTP Network Time Protocol
161 SNMP Simple Network Management Protocol
162 SNMP Simple Network Management Protocol (trap)

i Example 23.1

In UNIX, the well-known ports are stored in a file called
/etc/services. Each line In this file gives the name of the
server and the well-known port number. We can use the
grep utility to extract the line corresponding to the desired
application. The following shows the port for FTP. Note
that FTP can use port 21 with either UDP or TCP.

$grep ftp /etc/services

ftp 21/tcp
ftp 21/udp

23.28

i Example 23.1 (continued)

SNMP uses two port numbers (161 and 162), each for a
different purpose, as we will see in Chapter 28.

$ grep snmp /etc/services
snmp 161/tcp #Simple Net Mgmt Proto

snmp 161/udp #Simple Net Mgmt Proto
snmptrap 162/udp #Traps for SNMP

23.29

Figure 23.9 User datagram format

8 bytes

|_.- -
|-‘ r

H Header Data

Source port number Destination port number
16 bits 16 bits

Total length Checksum
16 bits 16 bits

23.30

il

‘ NoteI
UDP length

= IP length — IP header’s length

23.31

Figure 23.10 Pseudoheader for checksum calculation

5 32-bit source |IP address
®
Q
S 32-bit destination IP address
O
=5
Q q
a All Os el ([:;r;;tocol 16-bit UDP total length
_ Source port address Destination port address
3 16 bits 16 bits
(48]
L UDP total length
16 bits

Data

(Padding must be added to make the data a multiple of 16 bits)

23.32

i Example 23.2

Figure 23.11 shows the checksum calculation for a very
small user datagram with only 7 bytes of data. Because
the number of bytes of data iIs odd, padding is added for
checksum calculation. The pseudoheader as well as the
padding will be dropped when the user datagram is

delivered to IP.

23.33

Figure 23.11 Checksum calculation of a simple UDP user datagram

10011001 00010010 —>» 153.18

00001000 01101001 —> 8.105

10101011 00000010 —> 171.2
153.18.8.105 00001110 00001010 —> 14.10
00000000 00010001 ——>» Oand 17

171.2.14.10 00000000 00001111 —> 15

All Os 17 15 00000100 00111111 —> 1087
00000000 00001101 —> 13
1087 13 00000000 00001111 —> 15
00000000 00000000 — > 0 (checksum)
15 All Os 01010100 01000101 —> Tand E

| 01010011 01010100 ——> SandT
T E S T 01001001 01001110 —> land N
| N G 01000111 00000000 —> G and O (padding)

10010110 11101011 —> Sum
01101001 00010100 — > Checksum

23.34

i Example 23.2.1

Show the entries for the header of a UDP user datagram
that carries a message from a TFTP client to a TFTP
server. Fill the checksum with 0s. Choose an appropriate
ephemeral port number and the correct well-known port

number. The length of data Is 40 bytes. Show the UDP
packet format.

22.35

i Example 23.2.2

A client has a packet of 68000 bytes, can this packet be
transferred by a single UDP datagram?

22.36

i Example 23.2.3

A UDP header in hexadecimal format
0632000D 00 1CE2 17

nat 1s the source port number?

nat Is the destination port number?

nat is the total length of the user datagram?

nat Is the length of the data?

Is packet directed from a client to server or vice versa?
What is the client process?

S ===

22.37

Figure 23.12 Queuesin UDP

Daytime Daytime
client server
Incoming Outgoing I ‘ Incoming
queue queue queue queue

Outgoing l ‘
UDP Port 52000 UDP

X

ort 1

23.38

TCP Is a connection-oriented protocol; it creates a
virtual connection between two TCPs to send data. In
addition, TCP uses flow and error control mechanisms
at the transport level.

Topics discussed in this section:
TCP Services

TCP Features

Segment

A TCP Connection

Flow Control

Error Control

23.39

TCP Services

Process-to-Process Communication

Like UDP, TCP provides process-to-process
communication using port numbers. Next Table 23.2
lists some well-known port numbers used by TCP.

23.40

23.41

Table 23.2 Well-known ports used by TCP

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that is received
11 | Users Active users
13 | Daytime Returns the date and the time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
20 | FTP, Data File Transfer Protocol (data connection)
21 FTP, Control | File Transfer Protocol (control connection)
23 | TELNET Terminal Network
25 | SMTP Simple Mail Transfer Protocol
53 | DNS Domain Name Server
67 | BOOTP Bootstrap Protocol
79 | Finger Finger
80 | HTTP Hypertext Transfer Protocol
111 | RPC Remote Procedure Call

Stream delivery

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a
process (an application program) sends messages, with
predefined boundaries, to UDP for delivery.

UDP adds its own header to each of these messages and
delivers them to IP for transmission. Each message from the
process is called a user datagram and becomes, eventually, one
IP datagram. Neither IP nor UDP recognizes any relationship
between the datagrams.

TCP, on the other hand, allows the sending process to deliver
data as a stream of bytes and allows the receiving process to
obtain data as a stream of bytes. TCP creates

an environment in which the two processes seem to be
connected by an imaginary "tube” that carries their data across
the Internet.

23.42

Figure 23.13 Stream delivery

Sending
process

Receiving
process

TCP

23.43

TCP

23.44

Sending and Receiving Buffers

Because the sending and the receiving processes maynot write or
read data at the same speed, TCP needs buffers for storage.

There are two buffers, the sending buffer and the receiving buffer,
one for each direction

One way to implement a buffer is to use a circular array of I-byte
locations as shown in Figure 23.14.

For simplicity, we have shown two buffers of 20 bytes each;
normally the buffers are hundreds or thousands of bytes, depending
on the implementation.

Figure 23.14 Sending and receiving buffers

Sending Receiving
process process
TCP TCP
Next byte Next byte
to write to read
(=R
/>)
- -
|)
& Y e
Sent Not sent Not read .."
Next byte ,e Stream of bytes Next byte
to send I = to receive

23.45

Figure 23.15 TCP segments

Sending Receiving
process process
TCP TCP

Next byte
to accept

Next byte
to deliver

Segment N Segment 1

e Next byte

to receive

Next byte
to be sent

23.46

23.47

Full-Duplex Communication

TCP offers full-duplex service, in which data can flow in both directions
at the same time. Each TCP then has a sending and receiving buffer,
and segments move in both directions.

Connection-Oriented Service

1.The two TCPs establish a connection between them.
2. Data are exchanged in both directions.
3. The connection is terminated.

Reliable Service

TCP is areliable transport protocol. It uses an acknowledgment
mechanism to check the safe and sound arrival of data. We will
discuss this feature further in the section on

error control.

23.48

TCP Features

Numbering System

Although the TCP software keeps track of the segments being transmitted
or received, there is no field for a segment number value in the segment
header. Instead, there are two fields called the sequence number and the
acknowledgment number. These two fields refer to the byte number and not
the segment number.

Byte Number

TCP numbers all data bytes that are transmitted in a connection. Numbering
iIs independent in each direction. When TCP receives bytes of data from a
process, it stores them in the sending buffer and numbers them.

Sequence Number After the bytes have been numbered, TCP assigns a
sequence number to each segment that is being sent. The sequence
number for each segment is the number of the first byte carried in that
segment.

‘ Note I

The bytes of data being transferred in

each connection are numbered by TCP.

The numbering starts with a randomly
generated number.

23.49

Suppose a TCP connection is transferring a
file of 5000 bytes. The first byte is numbered
10,00l.

What are the sequence numbers for each
segment if data are sent in five segments,
each carrying 1000 bytes?

23.50

Example 23.3

The following shows the sequence number for each
segment:

Segment 1 Sequence Number: 10,001 (range: 10,001 to 11,000)
Segment 2 Sequence Number: 11,001 (range: 11,001 to 12,000)
Segment 3 Sequence Number: 12,001 (range: 12,001 to 13,000)

Segment 4 Sequence Number: 13,001 (range: 13,001 to 14,000)
Segment 5 Sequence Number: 14,001 (range: 14,001 to 15,000)

23.51

‘ Note I

The value in the sequence number field
of a segment defines the
number of the first data byte
contained in that segment.

23.52

‘ Note \

The value of the acknowledgment field
In a segment defines
the number of the next byte a party
expects to receive.
The acknowledgment number is
cumulative.

23.53

Flow Control

TCP, unlike UDP, provides flow control. The receiver of the data
controls the amount of data that are to be sent by the sender. This is
done to prevent the receiver from being overwhelmed with data. The
numbering system allows TCP to use a byte-oriented flow control.

Error Control

To provide reliable service, TCP implements an error control
mechanism. Although error control considers a segment as the unit of
data for error detection (loss or corrupted segments), error control is
byte-oriented, as we will see later.

Congestion Control

TCP, unlike UDP, takes into account congestion in the network. The
amount of data sent by a sender is not only controlled by the receiver
(flow control), but is also detennined by the level of congestion in the
network.

23.54

Figure 23.16 TCP segment format

H Header Data

Source port address
16 bits

Destination port address
16 bits

Sequence number
32 bits

Acknowledgment number
32 bits

HLEN Reserved Window size

4 bits 6 bits 16 bits
Checksum Urgent pointer
16 bits 16 bits

Options and Padding

23.55

Figure 23.17 Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

23.56

23.57

Table 23.3 Description of flags in the control field

Flag Description

URG | The value of the urgent pointer field is valid.

ACK | The value of the acknowledgment field is valid.
PSH | Push the data.

RST | Reset the connection.

SYN | Synchronize sequence numbers during connection.
FIN Terminate the connection.

Figure 23.18 Connection establishment using three-way handshaking

Active
open

A: ACK flag
S: SYN flag

Passive
open

Time

23.58

il

‘ Note I

A SYN segment cannot carry data, but it
consumes one sequence number.

23.59

il

‘ Note I

A SYN + ACK segment cannot
carry data, but does consume one
sequence number.

23.60

|: -

Note

An ACK segment, If carrying no data,
consumes no sequence number.

23.61

Figure 23.19 Data transfer
Server
Client A: ACKflag =
_ P: PSH flag %
Seq 8007

23.62

Data .

bytes: 8001-9g0y

ro

Data
bytes: 9001-1009¢

bytes.

ﬂ r'wnd:10000

seq: 15001
ack: 10001

|

Data
15001- -17000

Figure 23.20 Connection termination using three-way handshaking

Client

ﬂ_ Passive
W close

Time Time

23.63

il

‘ Note I

The FIN segment consumes one
sequence number If It does
not carry data.

23.64

TL Example 23.2.4

The following Is a dump of a TCP header in hexadecimal
format

05320017 00000001 00000000 500207FF 00000000

What is the source port number?

What is the destination port number?
What Is sequence number?

What is the acknowledgment number?
What is the length of the header?
What is the type of the segment?

What is the window size?

