
23.1

and SCTP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 PROCESS-TO-PROCESS DELIVERY

The transport layer is responsible for process-to-

process delivery—the delivery of a packet, part of a

message, from one process to another. Two processes

communicate in a client/server relationship, as we will

see later.

23.3

23.4

23.5

23.6

The transport layer is responsible for

process-to-process delivery.

Note

23.7

Figure 23.1 Types of data deliveries

23.8

23.9

Port numbers

 IP addresses versus port numbers

 IANA ranges

23.14

Figure 23.5 Socket address

23.15

Figure 23.6 Multiplexing and demultiplexing

23.16

23.17

23.18

23.19

Figure 23.7 Error control

23.20

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

23.21

23-2 USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a

connectionless, unreliable transport protocol. It does

not add anything to the services of IP except to provide

process-to-process communication instead of host-to-

host communication.

Well-Known Ports for UDP

User Datagram

Checksum

UDP Operation

Use of UDP

Topics discussed in this section:

23.22

23.23

23.24

23.25

23.26

23.27

Table 23.1 Well-known ports used with UDP

23.28

In UNIX, the well-known ports are stored in a file called

/etc/services. Each line in this file gives the name of the

server and the well-known port number. We can use the

grep utility to extract the line corresponding to the desired

application. The following shows the port for FTP. Note

that FTP can use port 21 with either UDP or TCP.

Example 23.1

23.29

Example 23.1 (continued)

SNMP uses two port numbers (161 and 162), each for a

different purpose, as we will see in Chapter 28.

23.30

Figure 23.9 User datagram format

23.31

UDP length

= IP length – IP header’s length

Note

23.32

Figure 23.10 Pseudoheader for checksum calculation

23.33

Figure 23.11 shows the checksum calculation for a very

small user datagram with only 7 bytes of data. Because

the number of bytes of data is odd, padding is added for

checksum calculation. The pseudoheader as well as the

padding will be dropped when the user datagram is

delivered to IP.

Example 23.2

23.34

Figure 23.11 Checksum calculation of a simple UDP user datagram

22.35

Show the entries for the header of a UDP user datagram

that carries a message from a TFTP client to a TFTP

server. Fill the checksum with 0s. Choose an appropriate

ephemeral port number and the correct well-known port

number. The length of data is 40 bytes. Show the UDP

packet format.

Example 23.2.1

22.36

A client has a packet of 68000 bytes, can this packet be

transferred by a single UDP datagram?

Example 23.2.2

22.37

A UDP header in hexadecimal format

 06 32 00 0D 00 1C E2 17

What is the source port number?

What is the destination port number?

What is the total length of the user datagram?

What is the length of the data?

Is packet directed from a client to server or vice versa?

What is the client process?

Example 23.2.3

23.38

Figure 23.12 Queues in UDP

23.39

23-3 TCP

TCP is a connection-oriented protocol; it creates a

virtual connection between two TCPs to send data. In

addition, TCP uses flow and error control mechanisms

at the transport level.

TCP Services

TCP Features

Segment

A TCP Connection

Flow Control

Error Control

Topics discussed in this section:

23.40

 TCP Services

Process-to-Process Communication

Like UDP, TCP provides process-to-process

communication using port numbers. Next Table 23.2

lists some well-known port numbers used by TCP.

23.41

Table 23.2 Well-known ports used by TCP

23.42

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a

process (an application program) sends messages, with

predefined boundaries, to UDP for delivery.

UDP adds its own header to each of these messages and

delivers them to IP for transmission. Each message from the

process is calIed a user datagram and becomes, eventually, one

IP datagram. Neither IP nor UDP recognizes any relationship

between the datagrams.

TCP, on the other hand, allows the sending process to deliver

data as a stream of bytes and allows the receiving process to

obtain data as a stream of bytes. TCP creates

an environment in which the two processes seem to be

connected by an imaginary "tube” that carries their data across

the Internet.

Stream delivery

23.43

Figure 23.13 Stream delivery

23.44

Sending and Receiving Buffers

 Because the sending and the receiving processes maynot write or

read data at the same speed, TCP needs buffers for storage.

There are two buffers, the sending buffer and the receiving buffer,

one for each direction

One way to implement a buffer is to use a circular array of I-byte

locations as shown in Figure 23.14.

For simplicity, we have shown two buffers of 20 bytes each;

normally the buffers are hundreds or thousands of bytes, depending

on the implementation.

23.45

Figure 23.14 Sending and receiving buffers

23.46

Figure 23.15 TCP segments

23.47

Full-Duplex Communication

TCP offers full-duplex service, in which data can flow in both directions

at the same time. Each TCP then has a sending and receiving buffer,

and segments move in both directions.

Connection-Oriented Service
1.The two TCPs establish a connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

Reliable Service
TCP is a reliable transport protocol. It uses an acknowledgment

mechanism to check the safe and sound arrival of data. We will

discuss this feature further in the section on

error control.

23.48

TCP Features

Numbering System

Although the TCP software keeps track of the segments being transmitted

or received, there is no field for a segment number value in the segment

header. Instead, there are two fields called the sequence number and the

acknowledgment number. These two fields refer to the byte number and not

the segment number.

Byte Number

TCP numbers all data bytes that are transmitted in a connection. Numbering

is independent in each direction. When TCP receives bytes of data from a

process, it stores them in the sending buffer and numbers them.

Sequence Number After the bytes have been numbered, TCP assigns a

sequence number to each segment that is being sent. The sequence

number for each segment is the number of the first byte carried in that

segment.

23.49

The bytes of data being transferred in

each connection are numbered by TCP.

The numbering starts with a randomly

generated number.

Note

23.50

Suppose a TCP connection is transferring a

file of 5000 bytes. The first byte is numbered

1O,00l.

What are the sequence numbers for each

segment if data are sent in five segments,

each carrying 1000 bytes?

23.51

The following shows the sequence number for each

segment:

Example 23.3

23.52

The value in the sequence number field

of a segment defines the

number of the first data byte

contained in that segment.

Note

23.53

The value of the acknowledgment field

in a segment defines

the number of the next byte a party

expects to receive.

The acknowledgment number is

cumulative.

Note

23.54

Flow Control

TCP, unlike UDP, provides flow control. The receiver of the data

controls the amount of data that are to be sent by the sender. This is

done to prevent the receiver from being overwhelmed with data. The

numbering system allows TCP to use a byte-oriented flow control.

Error Control

To provide reliable service, TCP implements an error control

mechanism. Although error control considers a segment as the unit of

data for error detection (loss or corrupted segments), error control is

byte-oriented, as we will see later.

Congestion Control

TCP, unlike UDP, takes into account congestion in the network. The

amount of data sent by a sender is not only controlled by the receiver

(flow control), but is also detennined by the level of congestion in the

network.

23.55

Figure 23.16 TCP segment format

23.56

Figure 23.17 Control field

23.57

Table 23.3 Description of flags in the control field

23.58

Figure 23.18 Connection establishment using three-way handshaking

23.59

A SYN segment cannot carry data, but it

consumes one sequence number.

Note

23.60

A SYN + ACK segment cannot

carry data, but does consume one

sequence number.

Note

23.61

An ACK segment, if carrying no data,

consumes no sequence number.

Note

23.62

Figure 23.19 Data transfer

23.63

Figure 23.20 Connection termination using three-way handshaking

23.64

The FIN segment consumes one

sequence number if it does

not carry data.

Note

22.65

The following is a dump of a TCP header in hexadecimal

format

05320017 00000001 00000000 500207FF 00000000

What is the source port number?

What is the destination port number?

What is sequence number?

What is the acknowledgment number?

What is the length of the header?

What is the type of the segment?

What is the window size?

Example 23.2.4

